

Subscriber access provided by ISTANBUL TEKNIK UNIV

Revised C-nmr Assignments for the Biologically Active Butyrolactone (-)-Trachelogenin

Lisa M. D. John, and Winston F. Tinto

J. Nat. Prod., 1992, 55 (9), 1313-1314• DOI: 10.1021/np50087a022 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50087a022 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

REVISED ¹³C-NMR ASSIGNMENTS FOR THE BIOLOGICALLY ACTIVE BUTYROLACTONE (-)-TRACHELOGENIN

LISA M.D. JOHN and WINSTON F. TINTO*¹

Centre for Natural Products Chemistry, University of Guyana, Georgetown, Guyana

ABSTRACT.—The biologically active butyrolactone (–)-trachelogenin [1] has been isolated from the leaves of *Glycydendron amazonicum*. The ¹³C-nmr assignments have been revised on the basis of a 2D nmr analysis.

The butyrolactone (-)-trachelogenin [1] (1) has been shown to be a Ca²⁺ antagonist and to possess potent antihypertensive activity (2). More recently 1 was shown to be an antagonist of platelet activating factor (PAF) (3) and to possess antileukemic (4) and in vitro anti-HIV (5) activities; it has also been synthesized by α -hydroxylation of the corresponding α , β -dibenzylbutyrolactone (6,7). In the course of a phytochemical investigation of Glycydendron amazonicum Ducke (Euphorbiaceae) (8), (-)-trachelogenin [1] was isolated as the major compound from the leaves. Since two previous reports (6,9) had conflicting ¹³C-nmr assignments for $\mathbf{1}$, we decided to make a 2D nmr analysis.

The ir, uv, and ms data for compound **1** were essentially identical with those reported (10). Although our ¹H and ¹³C chemical shifts were essentially identical

¹Present address: Department of Chemistry, University of the West Indies, Cave Hill Campus, P.O. Box 64, Bridgetown, Barbados.

to those reported in the literature for (-)-trachelogenin (6,9), our ¹³C assignments differ. A standard HETCOR experiment established direct ¹³C-¹H connectivities, while 2- and 3-bond longrange correlations were achieved by the use of the FLOCK (11) pulse sequence. In the FLOCK spectrum, a quaternary aromatic carbon at 8 147.68 (C-3) and a methylene carbon at δ 31.43 (C-7) had cross peaks with a proton at δ 6.62 (δc 112.07). In a similar fashion, another quaternary aromatic carbon at δ 146.60 and a methylene carbon at δ 41.79 had cross peaks with a proton at δ 6.71 (δ c 112.74). The results, which are summarized in Table 1, indicated that six of the twelve aromatic carbons were misassigned in the two previous reports (6,9). A listing of ¹³C assignments from Agrawal and Thakur (9) are included in Table 1 for comparison, and the misassigned carbons are indicated. This appears to be the first reported occurrence of a lignan in the family Euphorbiaceace.

EXPERIMENTAL

A Nicolet 5DX FTIR, a Varian XL 400 NMR, and a VG70-250S mass spectrometer and a Perkin-Elmer polarimeter were used.

G. amazonicum was collected in the Essequibo region of Guyana in November, 1987. Voucher specimens have been deposited at the Herbarium of the University of Guyana. Dried ground leaves (500 g) were extracted with 95% EtOH (3 liters), and the resulting extract was taken up in CHCl₃. The CHCl₃-soluble material (13.6 g) was chromatographed on SiO₂ with hexane/Me₂CO mixtures as eluent to give six major fractions. Fraction 2 eluted with 10% Me₂CO and crystallized from CHCl₃/MeOH to give friedelin (142 mg), mp 262-265°, identical with an authentic

Position	δ _c	δ _H (<i>J</i> _{HH})	Long-range correlations	δ _c ь
1	131.05	_	6.78.2.92	131.1
2	112.07	6.62(2.0)	6.67. 2.92. 2.53	111.6
3	147.68		6.62. 3.85	146.6°
4	148 98	_	6 68 6 62 3 84	149.2
5	111 34	6 78 (8 1)	6 67 6 62 3 84	112.8
6	120.78	6 67 (8 1 2 0)	6 62 2 92 2 53	120.9
7	31 43	2 92 2 53	6 62 4 02 2 51	31.6
8	43.66	2 51	4 02 3 13 2 93 2 92 2 53	43.8
9	70.35	4 02 4 02	3 43 2 92 2 53	70.2
1'	126 27		6 83, 6 71, 6 63, 3, 13, 2, 93	126.2
2'	112 74	671(20)	6.63. 3.13. 2.93	112.3°
2'	146 60		6 83 6 71 3 82	145.1
Δ'	144 91		6 83 6 71 6 63	147.9°
ς'	114 36	6 83 (8 0)	6 71	114 4
<i>6</i> ′	123.09	6 63 (8 0 2 0)	6 71 3 13 2 93	173.2
7'	<i>4</i> 1 70	2 12 2 92	6 71 6 63 3 43	42.0
e'	76.92	J. 1J, 2.75	3 13 2 93	76.5
o'	179 77		4 02 3 13 2 03	178.6
$\frac{2}{2}$	55 02	2.95	4.02, 5.15, 2.75	55.0
6 OMe	55 02	2.01		55.0
4-OME	55.02	2.04		55.0
2 -UME	<u>)).92</u>	5.02		JJ. 7
4-UH	_	2.64		
8 - UH		5.45		

TABLE 1. Assigned ¹³C and ¹H Chemical Shifts and Long-Range Correlations for (-)-Trachelogenin (1).^a

^aData are for solutions in CDCl₃. Chemical shifts were measured at 100.6 MHz for ¹³C and 400 MHz for ¹H. Coupling constants are in Hertz.

^bData in this column are from Agrawal and Thakur (9). ^cMisassigned carbons.

sample. The most polar fraction eluted with 40% Me_2CO and was purified by preparative tlc on SiO_2 with CHCl₃-MeOH (98:2) as mobile phase to give (-)-trachelogenin (353 mg).

(-)-Trachelogenin [1] was isolated as a pale yellow gum, $\{\alpha\}D-36^{\circ}\ (c=0.43, \text{CHCl}_3)$ [lit. (7) -44°]; ir (CHCl₃) 3440 (broad), 1767, 1607, 1592 cm⁻¹; uv (MeOH) 229 nm (ϵ 8300), 280 nm (ϵ 4700); ms [M]⁺ 338 (22%), 178 (2), 177 (2), 151 (19), 137 (100), 122 (6), 106 (4), 94 (5). Exact mass 388.1534, calcd for C₂₁H₂₄O₇, 388.1520.

ACKNOWLEDGMENTS

The nmr experiments were done at the Department of Chemistry, University of Toronto, and we are grateful to Profs. W.F. Reynolds and S. McLean for providing the facilities. Financial support from the Canadian International Development Agency is gratefully acknowledged.

LITERATURE CITED

- 1. M. Vanhaelen and R. Vanhaelen-Fastré, *Phytochemistry*, 14, 2709 (1975).
- K. Ichikawa, T. Kinoshita, S. Nishibe, and U. Sankawa, *Chem. Pharm. Bull.*, 34, 3514 (1986).

- S. Iwakami, Y. Ebizuka, and U. Sankawa, *Heterocycles*, 30, 795 (1990).
- S. Trumm and E. Eich, *Planta Med.*, 55, 658 (1989).
- E. Eich, J. Schulz, S. Trumm, P.S. Sarin, A. Maidhof, H. Merz, H.C. Schröder, and W.E.G. Müller, *Planta Med.*, 56, 506 (1990).
- S. Nishibe, M. Chiba, A. Sakushima, S. Hisada, S. Yamanouchi, M. Takido, U. Sankawa, and A. Sakakibara, *Chem. Pharm. Bull.*, 28, 850 (1980).
- 7. K. Khamlach, R. Dhal, and E. Brown, Tetrahedron Lett., 30, 2221 (1989).
- W.F. Tinto, G. Blyden, W.F. Raynolds, and S. McLean, J. Nat. Prod., 54, 1127 (1991).
- P.K. Agrawal and R.S. Thakur, Magn. Reson. Chem., 23, 389 (1985).
- 10. I. Inagaki, S. Hisada, and S. Nishibe, Chem. Pharm. Bull., 20, 2710 (1972).
- W.F. Reynolds, S. McLean, M. Perpick-Dumont, and R.G. Enriquez, Magn. Reson. Chem., 27, 162 (1989).

Received 20 January 1992